Psendomyothyria Towns., N. Am. Tach. iii, Tr. Am. Ent. Soc. xix (1892).
Myothyria r. d. Wulp, Biol. Cent.-Amer. Dipt. ii, 203 (1890).
Eumyothyria Towns., N. Am. Tach. iii, Tr. Am. Ent. Soc. xix (1892).
Rhinophora R. Desv., Myod. 2558 (1S30): Schin., Dipt. Austr. i, 545.
Leucostoma Meig., Mllig. Mag. ii, 250 (1803) ; Schin., Dipt. Anstr. i, 542.
Phyto R. Desv., Myod. 218 (1830): Schin., Dipt. Austr. i, 547.
Vanderwulpia Towns., N. Am. Tach. ii. Tr. Am. Ent. Soc. xviii, 381 (1591).
Euthera H. Loew, Centur. vii, 85 (1866).
Cestonia Rdi., Pr. Dipt. ital. iii (1859).
Scopolia R. Desv., Myod. 268 (1830) ; Schin., Dipt. Austr. i, 539.
Euscopolia Towns., N. Am. Tach. iii, Tr. Am. Ent. Soc. xix (1892).
It may be well to note the following synonymies:
Saundersia: syn. Epalpus Rdi.
Nemochæta: syn. ? Tuchinodes Br. and Bgst., Mnse. Schiz. 65 (1889).
Meigenia : syn. Spilosia Rdi., Pr. Dipt. ital. iii, 111 (1859). On anthority of v. d. Wulp (Biol. Cent.-Amer.).

Exorista: syn. ?Euryguster Macq.. Hist. Nat. Dipt. ii, 115 (1835); Dipt. Ex. ii, 3. 5\%. On authority of v. d. Wulp (1. c.).

Phasiopteryx: syn. Neoptera v. d. W., Biol. Cent.-Amer.; Dipt. ii 165 (1590). On authority of v. d. Wulp (1. c.).
Phyto: syn. Ptilocera R. Desv., Myod. 221 (1830).

THE NOIRTH AMEIRICAN GENEIRA OF NEMOCEROUS IDIP'TERA.

BY C. H. TYLER TOWNSEND.

Principally for my own convenience in the identification of species, I some time ago drew up synopses of the North American genera of Nemocera. Dr. Williston's book on the families and genera of N. American Diptera omits the genera of Nemocera and Muscidre sens. lat. I have already published, above, generic synopses of the Calyptrate Muscida, and the following tables of the Nemocera, as supplying a hiatus that has perhaps been felt by others as well as myself, are herewith published.

These tables should not be trusted without reference to the generic descriptions. They contain all the genera given in the Osten Sacken Catalogne, and all the new genera since described from America morth of Panama. Some European genera, which are omitted becanse they have not been recorded from this country, may yet be found to occur here. The tables have heen prepared from descriptions almost solely, and are offered only as a basis for generic determinations. 'They have, however, been largely verified by actual
use. In the C'ecidomyidx and P'schodidite only, are at number of European genera included, which it is possible may be found to ocem here. These are preceded by a o.

For some valuable suggestions on the grouping of the families of Nemocera, the student is referred to a preliminary paper on the subject by Baron Osten-Wacken (Ent. Mo. Mag. second series, ii, pp. 35-39, February, 1891). The more rational plan of the grouping of the families, as there pointed out, is adopted in this paper.

A symopsis of the families of Nemocera will be found in Dr. Williston's book above referred to.

SYNOPSIS OF GENERA.
 I.-NEMOCERA.
 Family CECIDOMYID.E.

1.--Three, or four, longitudinal reins in the wing, in the former case the thiml
nearly alwars forked; in the latter case the veins alwars simple and
the fourth distinct its entire length: wings alwass pubescent, no ocelli,
first tarsal joint much shortened (Cecidomyina).................................... Fire or more longitudinal veins in the wing, or if only four. then the fourth vein forked; wings hare or pahescent, ocelli present (except in Cecidogona), first tarsal joint not shortened (Lestremina)
12.
2.--Three longitudinal veins, the third furcate or simple.................................3.

Four longitudinal veins: cross-vein either between base and tip of lirst vein, or oblique and originating at base of first vein, in the former caso the second longitudinal vein is straight, in the latter case sinnate.

O As initiolit.
3.-Cross-vein placed between base and tip of first longitudinal vein, fremnently almost obsolete
. 1.
Cross vein very ohlique, originating at base of first longitudinal............. 11.
4.-Second longitudinal rein reaching margin at a slight or considemble distance before middle of tip of wing
5.
second rein reaching margin at or herond the exaet wing tip...................
-.-Third longitudinal vein simple, not foreate, first vein close to and parallel with costa: hairs of wing surface sealy: antenna filiform, 13-jointed. joints elongate, exlindrical, with a short pmbescence and withont verticils.
o Ny:nilocera.
Thind longitudinal rein furate 6.
6.-First and second veins very closely approximated their whole length and very near the costa, the second vein reaching the front border more than one-third of the distance before the tip of the wing: antenne lifto 26-jointed, joints subglobnlar، sessile, with short verticils . 7.
*It must be borne in mind that the term "longitudinal," as here applied, means any long vein of the wing as distinguished from a eross-vein, and thus includes what is known in other families as the anxiliary vein.
First and second veins widely distant at their extremities, the second vein reaching margin vers slightly before exact middle of wing tip; usually same number of joints in \hat{o} and O antemur, the joints either pedicelled or sessile in both sexes, or pedicelled in $\hat{\delta}$ and sessile in 9 .
Cecidomyia.
F-Mouth parts prolonged into a rostrum.............subgen. Clinorliyneliat.
Mouth parts normal.
Lasiopterat.
8.-Third vein simple, without fork; second vein forming a curve before crossvein and much curved backward at its extremity, reaching margin begond tip of wing; eross-vein rather large, oblique; joints of $¢$ autennæ pedicelled*...
. Colpodia.
Third vein furcate 9.
9.-Antennæ with same number of joints in both sexes; second vein reaches margin a little beyond tip of wing ; anteunal joints cylindrical, sessile. with a short pubescence, not verticillate
Asphondylia.
Antenuæ with a different number of joints in δ and \mathcal{F}; second vein reaches margin either at or besond tip of wing. 10.
10.-Antenne of $\}$ usually 26 -jointed, of $\$ 14$-jointed, sometimes in either ease witl one rudimentary joint more; joints in $\}$ pedicelled, alternately single and double, rarely all simple; in $\$$ pedicelled, cylindrical.

Diplosis.

Antennæ of $\delta 14$ - to 36 -jointed, slender, joints flagellate, pedicelled, verticillate, either romded or elongate, the petioles very often widened and capitate below the joints; if the joints are doubly verticillate, then the upper verticil or whorl is longer than the lower; antennæ of of usually thick and heavg, 14 - to 24 -jointed, with sbort verticils, formed as in Diplosis, either acaulate or with short pedicels; thorax more or less gibbose, frequently extending over the head in the form of a hood.
o Hormomyia.
11.-Second vein almost straight before the cross-vein ; joints of antenne sessile, or nearly so in both sexes
.o Dirhiza.
Second vein distinctly sinuate before cross-vein ; joints of antenne variable in number and pedicelled in both sexes.
o Epidosis.
12.-Ocelli present 13.
Ocelli absent; third vein forked, first vein very short, wings pubescent; antennæ 11-jointed in both sexes, moniliform, verticillate in $\widehat{\text { o }}$, and submoniliform, pubescent in $¢$ o Cecidogona.
13.-Third vein forked 14.
Fourth vein forked; autenne 11- to 20-jointed; in of moniliform, pilose. joints pedicelled; in $¢$ submoniliform, pubescent, joints sessile.
(:ampylomyza.
14.--Upper branel of fork of third vein forming a double curve, somewhat in shape of an S , lower branch in straight line with prefurea.
Tritozygat.
Tpper branch of fork forms a single light curve; $\}$ antemme 16 -jointed. verticillate, joints pedicelled
15.
15.--Antenne of $¢ 10$-jointed, pilose, joints moniliform; second vein reaching
apex of wing.. Catocha.
Anteunæ of $\$ 11-$ to 12-jointed, joints sessile; second vein terminating on frout border of wing, at one-fonrth distance before tip.o Lestremia.

[^0]
Family MYCETOPHILIDA.

1.-Coxie very strongly elongated (Mycetophilina) 4.
Coxse only moderately long (Sciarina) 2.
2.--Wings hairyWings hare3.
3.-Joints of funiculum of δ round, with long pedicels and thick whorls ofhair.Zygonenra.
Joints of funculum round or elongate. not pedicelled, and ouly slightly hairy.4.-Fourth vein arising from fifth far from base of wing, and almost at itsmiddle.5.
Fourth vein arising from fifth very near to base of wing. 12.
5.- Upper branch of fork of third vein very long and oblique. 6.
Upper branclı short, sometimes so steep that it appears like an extra cross- vein. 8.
6.-Fork of third vein not petiolate, i. e., arising exactly where the small cross- vein meets the third longitudinal. Mycetobiat.
Fork of third vein petiolate, always arising at some distance behind junc- tion of small eross-vein with third vein. 7.
7.-Fork of third vein longer than fork of fourthFork of third vein shorter than that of fourth8.--Fork of fourth vein arising beyond the small cross-vein ... Bolitoplilit.
Fork of fourth vein arising above small cross-vein, and apparently from thethird vein.9.
9.-Antennæ unusually long and slender, filiform Materocera.
Antenne rather short, and usually also rather thickened. 10. 10.
10.--Proboscis beak-like, elongate Asynululnun.
Proboscis not elongate. 11.
11.-Antennæ broad, fiattened palpi not incurvate. Ceroplatis.
Antennæ not flattened ; palpi ineurvate. Pletyniar.
12.-Third vein furcate, the upper branch of the fork usnally very steep (andoften arising so near to the base that it forms and closes a very smallsupernumerary cell in front of it).13.
Third vein simple 18.
13.-Second longitudinal vein elongate, more so than in the other allied genera, conspicnous Endicratiat.
Second vein shorter, not elongate. 14.
14.--Small cross-vein more than twice as long as prefurca of thisd vein, and sooblique that it appears like the begimning of the latter: the steep basalpart of third vein and the stecp upper branch of fork of same appearinglike two parallel cross-veins.'Tefratgonctirat.
small cross-vein only a little longer than, as long as, or shorter than pre-furca of third vein, alwass moderately oblique, but never appearinglike begimning of latter; the steep basal part of third vein usually di-vergent or convergent with upper braneh of fork of same.15.-Costal vein reaching only to extremity of third longitudinal.. Noioplida.Costal vein extending always somewhat, and often widely beyond extremityof third vein16.
16.-Fonrth vein forked almost immediately below small eross-vein, the pre-furca, therefore, very shortLasiosonila.
Fonrth vein forked far beyond small cross-vein, the præfurca long 1%
17. - Fifth vein forked exactly opposite, or before small cross-vein ; third vein always straight Nedennplieria.
Fifth vein forked far beyond small cross-vein ; third vein sometimes simuate 1’olyleptat.
18.-Three ocelli present* 19.
Only two ocelli Mycetoplifin.
19.-Costal vein extending more or less beyond extrenity of third vein 20.
Costal vein reaching only to extremity of third vein 28.
20.--Fifth rein not fureate Arnenif.
Fifth vein furwate 21.
21.--Fork of fifth vein lying before or under fork of fourth. 2.2.
Fork of fifth vein lying perceptibly beyond the fork of the fourth.
Phihini:t.
2..--Proboscis elongate, beak-like. Ginoriste.
Proboscis not elongate 23.
23.--Front branch of first vein (anxiliars) comected with main branch by across-vein24.
Front branch of first vein not comected with main branch by a cross-vein.. 26.
24. - Ocelli of nearly equal size; front branch of first vein broken off and ter-minating in the cross-vein which comects it with the main branch.
Synteninil.
Ocelli of unequal size; front branch of first vein nowlere broken off, but terminating in front margin. 25.
2J.--Costal-vein extending widely berond termination of third vein. IBoletinas.
Costal vein extending but little besond termination of third ; aytennæ likePlatyuraDionmonns.
26.--Second hasal cell very long, reaching beyond middle of wing; bases of Leia.upper branches of fourth and fifth veins indistinct
second basal cell moderately long, always ending before middle of wing;bases of upper branches of fourth and fifth veins distinct.27.
27.--Fourth posterior cell lying between the two branches of fifth longitudinalvein, very pointerl or acute at base and generally very narrow, thebranches only a little divergent
Epicypiar.
Fourth posterior cell moderately wide, branches of fifth vein strongly diver- gent Docesiat.
こ8.--Fifth vein fureate 29.
Fifth veln not fureate Kygonnyia.
29.-Front branch of first rein very long, and always ending in costa.
Neoglapliyroblerrat.
Front branch of first vein very short, or if longer, then always ending in main branch, not in front border 30.
30 - Fifth vein forked before or opposite small eross-vein, and always nearer to base of wing than to fork of fourth 31.
Fifth vein forked beyond small cross-vein, and always nearer to wing bor- der than to fork of fourth Mycothema.

[^1]> 31.-Front branch of first vein reaching beyond middle of second basal cell.

Triclıontit.

32.-Fork of fifth vein very acnte, the lower branch at its middle suddenly diverging from the upper branch.

Ikli, mosiat.
Fork of fifth vein not strikingly acnte, the lower hanch gradually diverging from the upper..

Allodia.

Family (ULICID) E.

1.- l'roboscis short, searcely longer than head; metatarsi longer than next joint
(Corethrina) ... Corethra.

Proboscis very long, always longer than head and thorax together (Cnlicina)...2.
2.-Tip of proboseis strongly curved

Mexarrhina.
Tip of proboseis straight
. 3.
3.--Palpi very short in both sexes...

4.-Palpi longer than proboscis in both sexes; forceps of δ as long as, or shorter than last segment

Anopheles.
lapip long in of very short in ρ; fore eps of of longer than last segment.
Culex.

Family CHIRONOMID E.

1.--Flagellum of antenue in of long and thickly ciliate, plumose-tufted or penicillate (Chironomina)
4.

Flagellum of of only short hairs, never with plume-like tults or pencils....
2.-Antenne with an equal number of joints in both sexes.
3.

Autemare of \& 14 -jointed, of 9 -jointed ; palpi short.... II yalrobienns.
3.--Anteme 7-jointed in both sexes Chasinatonotus.
Antemar 15 -jointed in both sexes
Corarria.
4.--Second hasal cell closed, the hind cross-vein, therefore, always distinet .5.

Sccond basal cell open, hind cross-vein wholly wanting . 6.
5.--Antenne with same number of joints in both sexes.
T'anypus.

Antenme with at least twice as many joints in of as in \mathcal{f}..... .. Dianmesar. 6.-Thorax greatly arched and usmally strongly produced in frout; legs, particularly anterior pair, long and slim; third rein never furcate; long pubescence of of antenuee arranged in plumose tufts Chivonomins.
Thorax moderately arched, never produced anterionly; legs moderately long and often very robust; third vein often furate: the long pubescence of δ antenne in poncils
7.--Claws of hind feet greatly unequal in length, each tarsus apparently with only one claw; front femora much diluted, with a series of spines on anterior edge subgen. Heterom, ian.
Claws of hind feet equal; front femora normal, not differentiated from others.

Ceratoporon.

Family Pis'CHODID.E.

1.- Third vein ending exactly at afex of wing 1"syeliodia.Thitl vein ending below apex of wing 2
2.-Wing of δ with a moderately large opaque knob in middle... Ulimyin. Wing withont such knol, normal in botb sexes o Pericoma.
Family TIPULIDE.
1.-Wings wholly wanting: species spider-like in appearance (subfam. Eriop- terima pt.). Chioneas.
Wings always present, rarely stunted and rudimentary in q 2.
2.-Seven longitudinal veins present 5.
Only six longitudinal veins (subfam. Ptychopteriua) 3.
3.-Subcostal cross-veiu absent, first submarginal cell much longer than second..4.Subcostal cross-vein present, second submarginal cell much longer than first ;six posterior cellsIdioplasta.
4.-Three posterior cells; antennce 20-jointed, tibial spurs weak.
Bittacomorplat.
Four posterior cells ; antennæ 16 jointed, tibial spurs strong.
Piychopterat.
5.--Last joint of palpi shorter, or not much longer than the two preceding joints together ; ${ }^{*}$ auxiliary vein usually ending in costa and connected with first vein by a cross-vein† (sec. Tipulidse brevipulpi) 16.
Last joint of palpi very long, whip-like: anxiliary vein ending in first vein,and not connected by an cross-vein with either first vein or costa, ex-cept by lumeral cross-vein with latter (sec. Tipulidæ longipalpi)6.
6.-Legs extremely long and slender, especially the tarsi : anterior branch ofsecond vein absent, obsolete or perpendicular (subfam. Dolichopezina)..7.
Legs not uncommonly slender ; anterior branch of second vein present andoblique10.
7.-Antenna 13-jointed: anterior branch of second vein wholly absent; § forceps complex Dolirhopezal.
Antennre 8- to 11-jointed; § forcejs simple8.
8.--Fifth posterior cell not in contact with discal cell: wings hyaline.
Megistocera.
Fifth posterior cell in contact with discal cell ; wings not byaline. 9.
9.--Head on a neck-like prolongation of thorax ; seventh vein short, running into anal angle Brachypremina.
Head not on such prolongation: seventh vein terminating in margin some distance from anal angle Tanypremina.
10.--Antennre of δ pectinate (subfam. Ctenophorina) 11.
Antenne not pectinate (subfam. Tipulina s.str.) 12.
11.-Antennæ of $\}$ short pectinate on inside. outside and below; q with a verylong sword-like ovipositorKiplinrar.
Antennæ of δ pectinate on inside and outside, but not below; q with amoderately long, but never sword-like, ovipositor.. Cteinopliorar.

* In Pedicia the last joint of palpi is nearly one and a half times as long as the three preceding joints together; but the auxiliary vein ends in the costa, and is connected with the first vein by a cross-vein.
\dagger In Antocha the auxiliary vein ends in the first vein, but the palpi are not whip-like.
 anomala)
.28.
19.-Antennal joints almost cylindrical, those of flagellum longer than wide; head smooth

20.

Antennal joints ronnded, those of Hagellum not longer than wide; head
and thorax punctired..riocrinat. 20.--Yellow, black-striped and spotted species.. 1.

Species with brownish body and grayish head and thorax.. Planiacrocerat.
21.-Five posterior cells; small cross-vein present................ (ylindionomai.

Only four posterior cells; subwarginal cell in close contact at base with discal cell, the small cross-vein therefore wanting

Hiognat.
22.-No submarginal cell; rostrum longer than head and thorax together, an-

Snbmarginal cell preseut............................ 23.
23.--Rostrum of δ quite as loug as hody, somewhat shorter in $f:$ anteuna 15 jointed

Elephanioniniat.
Rostrum never so long as head and thorix together... 24.
24.--Discal cell present...................................25.

Discal cell absent... Elliןterat.
25.-No marginal cross-vein 26.

Marginal cross-vein present (faint in Antochu) ... 27.
26.--Rostrmm slightly longer than head.................... RIBaniblialian.

Rostrum shorter than head............................... Atiarbib.

* Do not mistake a second (outer) marginal cross-vein in Parutropesa for a branch of second vein; this genus is meluded in next division with second sein simple and ouly one submarginal cell.
$27 .-$ A supernumerary marginal cross-vein connecting second vein a little before its tip with costa, inner marginal cross-vein elongate; antenne 15jointed
I'arititupesin.
Ouly one marginal cross-vein 28.
2o.-Tip of first vein only a little beyond proximal end of submarginal cell...29.
Tip of first vein about as far beyond proximal end of submarginal cell asbreadth of wingDiciannoplychis.
:99.--Anal angle of wing nearly square prominent; submarginal cell much lon-ger than first posterior, anxiliary vein ending in first vein.Antochan.Anal angle but little prominent, not at all square: submarginal and firstposterior cells nearly equal, anxiliary vein ending in costa.
'Cencluolialois.

30. A supernumerary cross-vein present between fifth and sixth veins.
'roocholool:.
No such eross-vein present 31.
31.-- Prohoscis longer than head and thorax together GerallonilyianProboseis not longer than head32.
32.--Joints of flagellum pedicelled, antennæ pectinate, hipectinate, or subpecti-nate.Rhipidia.
Antennal joints meither pedicelled nor pertinate 33.
33.-Tip of auxiliary vein usually opposite, anterior, or only a little posterior to origin of second vein ; marginal cross-vein always at tip of first vein.
Dicurantinyia.
Tip of anxiliary vein usually far heromd origin of seeond vein; marginalcross-vein often some distance before tip of first veinlainmolidi.
34.-Tibiæ withont terminal spurs (subfam. Eriopterina) 35.
Tibire with terminal spurs (minute in Phyllolabis, Rhaphidolabis and Plec- tromyia 19.
35.--Wings either distinetḷ pubescent on their whole surface, or with long pu- bescence on the longitudinal veins 36.
Wings either wholly maked, or with a scareely pereeptible pubescence on veins 41.
36.-Wings pubescent only on veins; diseal cell present or absent. 37.
Wings pubescent on their whole surface; discal cell present or ahsent.
IEHypholophis.
31. Prefurca ending in second submarginal cell, which is longer than first (genus Erioptera 3 s.
Præfurea ending in first submarginal eell, whieh is longer than seeonl.
Molophilus.
35.--Anterior brancla of fourth vein forked subgen. Mesocyphona.Posterior branch of fourth vein forked39.
39.-Axillary eell broader in middle than near margin of wing.
subgen. Erioplerit.
Axillary eell much broader near margin than in middle ; discal cell present. 40
10.--Fork of posterior brameh of fourth vein emitting a stump of a rein fromits angular anterior branch into the discal cell..subgen. Hoplolabis.
Fork of posterior braneh of fourth vein normal, emitting no stump. the twobranches arcuatesubgen. Aeyplionit.
11.--Axillary vein vers strikingly undulating. Nyniplertit.Axillary vein straight, or only gently enrver42.
42.--An inner marginal cell present, which is short, broad and nearly triangular ; discal cell absent
Cryptolabis.
Inner marginal cell either wanting (no marginal cross-vein), or elongate and much longer than wide. 43.
43.--Fork of second vein very short and the anterior branch moderately steep, the onter marginal cell therely small and almost in the form of an equilateral triangle 44.
Fork of second vein long, the anterior branch almost parallel with posteriorand the outer marginal cell in consequence much extended in length...45.44.-Marginal cross-vein present, connecting first vein with prefurca of secondconsiderably before furcation of latter.Empeda.
No marginal cross-vein Gonomyian.
45.-Marginal cross-vein sitnated well beyond furcation of second vein 47.
Marginal cross-vein situated immediately after furcation of second vein.. 46.
46.-Auxiliary vein terminating before marginal cross-vein...Gnophomyia.Auxiliary vein terminating beyond marginal cross-veinTrimicra.
47.-Posterior branch of fourth vein not forked (four posterior cells present)..48.Both branches of fourth veiu forked (five posterior cells present).
Cladira.
48.--Great cross-vein far anterior to origin of second vein: legs long, very slen- der and delicate Diotreplin.
Great cross-vein far beyond origin of second vein* Sigmatomera.
49.-Antennæ 6- to 10 -jointed (subfam. Auisomerina) 50.
Antemre at least 13 -jointed, but usually 16 -jointed 52.
50.-Discal cell wanting Anisomera.
Discal cell present 51.
51.-Subcostal cross-vein a short distance before tip of auxiliary vein, the mar-ginal cross-vein a short distance before tip of first vein...... Eriorera.
Subcostal cross-vein at very tip of ainxiliary vein, the marginal cross-vein more distant from tip of first vein Penthoptern.
52.-Subcostal cross-vein at abont middle of wing and always before origin of second vein (subfam. Amalopina) 53.
Subcostal cross-vein situated beyond middle of wing, and always beyond origin of second vein (snbfam. Limnophilina) 58.
53.--Antennæ 13-jointed 54
Antenna 16-jointed 56.
54.-Two marginal cross-veins present, and therefore three marginal cells, theinnermost marginal cell short and broad.Dicranota.
Only one marginal cross-vein, inner marginal cell elongate 55.
55.--Both branclies of fourth vein forked Rhaphidolabis.
Anterior branch of fourth vein simple, posterior branch furcate.
Plectromyia.
56.-Whole surface of wings finely pubescent U1a.Wings naked57.
57.--Small cross-vein at a right angle with longitudinal axis of wing ; last jointof palpi not longer than two preceding joints together......Amalopis.

Small cross-vein at a very oblique angle with longitndinal axis of wing, and in one line with great cross-vein : last joint of palpi longer than the three preceding joints togetherDedicin.

[^2]58.--Whole surface of wings finely, but densely pubescent. Ulonimplina.
Wings not pubescent (or only some of the veins) 59.
59.--Marginal cross-vein absent Plyyllolais.Marginal cross-vein present60.
60.-Axillary vein unusually short, curved abruptly toward anal angle.
Trichocera.
Axillary vein moderately or very long, not so curved 61.
61.-Auxiliary vein united with costa by an extra cross-vein at abont middle ofwingEpipliragina.
Anxiliary vein not so united with costa (genus Limnophila). 62.
62.-Antenne of δ much longer than those of Q, filiform 63.
Antennre of δ and ρ not strikingly unequal. 64.
63.-A supernumerary cross-vein present in second basal cell.
subgen. Idiopterat.
No such cross-vein; \uparrow antennæ with a long, erect pubescence on flagellumsubgen. Lasionimatix.
64.-Two branches of second vein connected by a cross-vein.
subgen. Dicranopliragma.
Two branches of second vein not so connected. 65.
65.--A supernnmerary cross-vein in second basal cell; antennæ short in both sexes. subgen. Eplaeliat.
No such eross-vein 66.
66.-Marginal cross-vein situated well beyond furcation of second vein, very little before tip of first vein. 67.
Marginal cross-vein situated immediately or but little beyond furcation of second rein, and even in latter case well before tip of first vein.
subgen. Limmoplila.
67.--Subcostal cross-vein situated well before tip of auxiliary vein.
subgen. Prionolabis.
Subcostal cross-vein situated at tip of auxiliary vein, and appearing asthough connecting first vein with costa, the auxiliary vein terminatingin middle of cross-vein......subgen. Dactylolabis.
Family DIXIDE.
One genus. Dixat.
II.-NEMOCERA ANOMALA.
Family BIBIONIDÆ.
1.-Second basal cell present (Bibionina) 2.
Second basal cell wanting (Scatopsina) 5.
2.-Third vein furcate 3.
Third vein simple; second basal cell longer than first; wings of δ never shortened 4.
3.--Palpi 4-jointed; first antennal joint very elongate. Hesperinus.

4.--Front tibix ending in a spine-like process. Bibio.
Front tibie terminated with a coronoid spiny process. Dilophins.
5.--Front tibie terminating in a spinous process. Aspistes.
Front tibire of usual form ; third vein not furcate..................... Seatopse.
Family SLMULIDA.
One genus Simulium.
Family BLEPHAROCERIDE.
1.-An incomplete vein present near the posterior wing margin 2.
No incomplete vein near posterior margin. Pallostonila.
2.-Second vein with two branches 3.
Second vein simple 4.
3.--Origin of anterior branch of second vein comeident with origin of thirdrein; anterior tibiæ curved in \}Bibiocephala.
Origin of anterior branch of scond vein heyond origin of third vein : ante- rior tibie straight in $\hat{\delta}$ Agathon.
4.--Eyes contignons, bisected by an infacetted cross-band, or by a simple groove.Blepharocera.Eyes widely separated, not so bisectedLiponenra.
Family RHYPHID※.
Second vein reaching costa at same point with first ; eres separated br a hroadfront, occiput little developedOlbiograster.
Second and first veins terminating separately in costa : front narrower, occiputmuch developedIRhyphis.
Family ORPHNEPHILID.E.
One genns

\qquad
Orphnephila.

NOTES.

Mrcetophilide:-I cammot with certainty separate the genus Diomonus Wlk. (List. i, 87) from Boletina ly means of the description of that author. By taking his statement as true that Diomonus has the wings of Leptomorphus, I have inserted it in the table, as distinguished from Boletina hy the costal vein extending but little beyond the termination of the third vein. But I camot rely on any interpretation of the indefinite statement that " the areola under the anterior margin of the wing, absent in that genus [Leptomorphus], is present in this [Diomomus]." I would omit the grenns altogether, but for the fact that it is indicatel in the Osten Sacken Cata-
logue as represented in the museum at Cambridge (Mass.), whence I infer that Baron Osten Sacken has seen it, and considers it a valid genus.

Tipulide:-Mesocyphona, Acyphona and Hoplolabis are subgenera of Erioptera. For the proper definition of them, see Osten Sacken, Mon. 4, 151-2 ; also O. S., Stud. Tipulidæ, ii, Berl. Ent. Zeit. xxxi (1887), 193-4.

For proper limitation of the subgenera of Limnophila, see O. S., Mon. 4, 197-99 ; and O. S., Stud. Tip. ii, l. c. 209.

For explanation of the terminology used in connection with the venation of the wings, see 0 . S., Mon. 4, p. 34.

Blepharoceride:-For a synopsis of the described species and genera of the Blepharoceride of the world, see a paper recently published by Baron Osten Sacken, Berl. Ent. Zeitschr. xxxvi (1891), pp. 407-11.

REFERENCES.

CECIDOMYID \neq

Asynapta H. Loew, Dipt. Beitr. iv, 20 (1850) ; Sch., Dipt. Austr, ii, 405.
Spaniocera Winn., Liun. Ent. viii, 190 (1853) : Sch., Dipt. Austr. ii, 406.
Cecidomyia Meig., Illig. Mag. ii, 261 (1803) ; Sch., Dipt. Austr. ii, 369.
Clinorhyncha H. Loew, Dipt. Beitr. iv. 39 (1850) ; Sch., Dipt. Austr. ii, 409.
Lasioptera Meig., Syst. Beschr. i, 88 (1818); Sch., Dipt. Austr. ii, 406.
Colpodia Winn., Linn. Ent. viii, 188 (185̄3); Sch., Dipt. Austr. ii, 401.
Asphondylia H. Loew. Dipt. Beitr. iv, 20 (1850) : Sch., Dipt. Austr. ii, 395.
Diplosis H. Loew, Dipt. Beitr. iv, 20 (1850) ; Sch., Dipt. Austr. ii, 382.
Hormomyia H. Loew. Dipt. Beitr. iv. 20 (1850) ; Sch., Dipt. Austr. ii, 396.
Dirhiza H. Loew. O. S. Mon. Dipt. N. A. i, 176.
Epidosis H. Loew, Dipt. Beitr. iv. 20 (1850) ; Sch., Dipt. Austr. ii, 402.
Cecidogona H. Loew. O. S. Mon. Dipt. N. A. i, 178.
Campylomyza Meig., Ssst. Beschr. i, 101 (1818); Sch., Dipt. Austr. ii. 411.
Tritozyga H. Loew, Mon. Dipt. N A. i, 178 (1862).
Catocha Halid., Ent. Mas. i, 156 (1833): Sch., Dipt. Austr. ii, 412.
Lestremia Macq., Dipt. Nord. Fr. 1 (1826); Sch., Dipt. Austr. ii, 413.

MYCETOPHILID 疋。

Trichosia Winn., Beitr., Mon. Sciarinen, Zool. Bot. Ges, xvii (1867).
Zygoneura Meig., Syst. Beschr. vi, $3 \uparrow 4$ (1830) ; Sch., Dipt. Austr, ii, 416.
Sciara Meig., Illig. Mag. ii, 263 (1803) ; Sch., Dipt. Austr. ii, 417.
Mycetobia Meig., Syst. Beschr. i, 229 (1818) ; Sch., Dipt. Anstr. ii, 426.
Ditomyia Winn., Stett. Ent. Zeit. vii, 15 (1846) ; Sch., Dipt. Austr. ii, 427.
Plesiastina Winn., Stett. Ent. Zeit. xiii, 55 (1852) ; Sch., Dipt. Anstr. ii, 42 S.
Bolitophila Meig., Syst. Beschr. i, 220 (1818) ; Sch., Dipt. Austr. ii, 429.

Macrocera Meig．，Illig．Mag．ii， 261 （1803）；Sch．，Dipt．Austr．ii， 430.
Asyndulum Latr．，Hist．Ius．et Crust．xiv， 290 （1804）；Sch．，Dipt．Austr，ii， 440.
Ceroplatus Bosc．，Act．Soc．d＇Hist．Nat．Paris i，1， 42 （1792）；Sch．，D．A．ii， 433.
Platyura Meig．，Illig．Mag．ii， 264 （1803）；Sch．，Dipt．Austr．ii， 435.
Eudicrana H．Loew，Centur．ix， 23 （1869）．
Tetragoneura Winn．．Stett．Ent．Zeit．vii， 18 （1846）；Sch．，Dipt．Austr．ii， 451.
Sciophila Meig．，Syst．Beschr．i， 245 （1818）；Sch．，Dipt．Austr．ii， 441.
Lasiosoma Winn．，Zool．Bot．Ges．xiii， 748 （1863）；Sch．，Dipt．Austr．ii， 448.
Neoempheria O．S．Cat．216，Empheria Wiun．，Zool．Bot．Ges．xiii， 738 （1863）； Sch．，Dipt．Austr．ii， 446.
Polylepta Winn．，Zool．Bot．Ges．xiii， 745 （1863）；Sch．，Dipt．Austr．ij， 447.
Mycetophila Meig．，Illig．Mag．ii， 263 （1803）；Sch．，Dipt．Austr．ii， 481.
Acnemia Winn．，Zool．Bot．Ges．xiii， 798 （1863）；Sch．，Dipt．Anstr．ii， 461.
Phthinia Winn．，Zool．Bot．Ges．xiii， 779 （1863）；Sch．，Dipt．Austr．ii， 456.
Gnoriste Meig．，Syst．Beschr．i， 243 （1818）；Sch．，Dipt．Austr．ii， 455.
Syntemna Winu．，Zool．Bot．Ges．xiii， 767 （1563）；Seh．，Dipt．Austr．ii， 452.
Boletina Staeger，Kröj．Tidskr．iii， 234 （1840）；Sch．，Dipt．Austr．ii， 454.
Diomonus Wlk．，List，i， 87 （1848）．
Leia Meig．，Syst．Beschr．i， 253 （1818）；Sch．，Dipt．Austr．ii， 459.
Epicypta Wiun．，Zool．Bot．Ges．xiii， 909 （1863）；Sch．，Dipt．Austr．ii， 483.
Docosia Winn．．Zool．Bot．Ges．xiii， 802 （1863）；Sch．．Dipt．Austr．ii， 462.
Zygomyia Wiun．，Zool．Bot．Ges．xiii， 901 （1863）；Sch．，Dipt．Austr．ii， 480.
Neoglaphyroptera O．S．Cat．216；Glaphyroptera Winn．，Zool．Bot．Ges．xiii， 781 （1863）；Sch．，Dipt．Austr，ii， 456.
Mycothera Winn．，Zool．Bot．Ges．xiii， 913 （1863）；Sch．，Dipt．Austr．ii， 483. Trichonta Wiun．，Zool．Bot．Ges．xiii， 847 （1863）；Sch．，Dipt．Austr．ii， 469. Rhymosia Winn．，Zool．Bot．Ges．xiii， 810 （1863）；Sch．，Dipt．Austr．ii， 463.
Allodia Wiun．，Zool．Bot．Ges．xiii， 826 （1863）；Sch．，Dipt．Austr．ii， 466.

CULICID 正。

Corethra Meig．Illig．Mag，ii， 260 （1803）：Sch．，Dipt．Austr．ii， 623.
Megarrhina R．Desv．，Essai s．C＇ulic．Mem．Soc．d＇Hist．Paris iii， 112 （1827）．
Aedes Meig．．Syst．Beshr．i， 13 （1818）；Sch．，Dipt．Austr．ii， 630.
Anopheles Meig．，Syst．Beschr，i， 10 （1823）；Sch．，Dipt．Austr．ii， 624.
Culex Linn．，Faun．Suec． 1890 （1761）；Sch．，Dipt．Austr．ii， 625.

CHIRONOMID里。

Hydrobænus Fries，k．vetensk．ak．1829，176（1830）；Sch．，D．A．ii． 595.
Chasmatonotus H．Loew，Centur．v， 1 （1864）．
Oecacta l＇oey，Mem．Hist．Nat．Cuba i，242（1851）．
Tanypus Meig．．Illig．Mag．ii， 261 （1803）；Seh．，Dipt．Austr．ii， 615.
Diamesa Meig．，Syst．Beschr．vii， 12 （1838）；Sch．，Dipt．Austr．ii， 615.
Chironomus Meig．，Illig Mag．ii， 260 （1803）；Sch．．Dipt．Austr，ii， 595.
Heteromyia Say，Compl．Wr．i，79，Amer．Entomology ii（1825）．
Ceratopogon Meig．，Illig．Mag，ii，261（1803）：Sch．，Dipt．Anstr，ii， 574.

PSYCHODID\＆。

Psychoda Latr．，Précis Caract．Gén．Ins． 152 （1796）：Sclı．，Dipt．Austr．ii， 635. Ulomyia Wlk．，Ins，Brit．iii， 261 （1856）；Sch．，Dipt．Austr．ii， 635. Pericoma Wlk．，Ins．Brit．iii， 256 （1556）；Sch．，Dipt．Austr．ij， 632.

TIPULID 正.

Chionea Dalm., k, vet. ac. 1816, 102; Sch., D. A. ii, 573 ; O. S. Mon. iv, 168.
Idioplasta O. S. Cat. 36, 222 (18.8) : Protoplasa O. S., Pr. Ac. Phil. (1859), Mon. iv, 316 .
Bittacomorpha Westw., Loud. Edin. Phil. Mag, vi, 281 (1835) ; O. S. Mon iv, 309.

Ptychoptera Meig., Illig. Mag. ii, 262 (1803) : Sch., D. A. ii, 495 ; O. S. Mon. iv, 309.

Dolichopeza Curtis, Brit. Ent. ij, 62 (1825) : Sch., Dipt. Austr. ii, 525.
Megistocera Wied., Aus. Zw. ., 55 ; Maekistocera Wd., Dipt. Exot. 41 (1821); O. S. Stud. Tip. i, 158.

Brachypremna O. S. Studies on Tipulidze i, Berl. Ent. Zeitschr. xxx, 161 (1886).
Tanypremna O. S. Biol. C. A. Dipt. i, 19 (1886), Stud. Tip. i, 163.
Xiphura Brıllé. O. S. Stıd, Tip. i, 173.
Ctenophora Meig., Illig. Mag. ii, 263 (1803): Sch., Dipt. Austr. ii, 498.
Pachyrrhina Macq., Hist. Nat. i, 88 (1834) ; Sch., Dipt. Austr. ii, 503.
Holorusia H. Loew, Centur, iv, 2 1863); O. S. Stud. Tip. i, 183.
Longurio H. Loew, Centur. viii, 2 (1869) : O. S. Stud. Tip. 183.
Stygeropis H. Loew, Centur. iv, 42 (1863) ; O. S. Stud. Tip. i, 182.
Tipula Linn., An. Suec. Obs. (1736), Fann. Snecica, 430 (1761) ; Sch., D. A. ii, 509
Triogma Sch., Wien. Ent. Monat. vii, 223 (1863) ; D. A. ii, 560 ; O. S. Mon. iv, 303.
Phalacrocera Sch., Wien Ent. Mon. vii, 224 (1863): D. A. ji, 561; O. S. Mon. iv, 305.
Cvlindrotoma Macq., Hist. Nat. i, 107 (1834) ; Sch., D. A. ii, 562 : O. S. Moı. iv, 296.
Liogma O. S. Mon. iv, 298 (1868) ; Stud. Tip. ii, Berl. Ent. Zeitschr. xxxi. 226.
Toxorrhina H. Loew, Linn. Ent. v, 400 (1851): O.S Mon iv, 109.
Elephantomyia O. S. Proc. Ac. Nat. Sci. Phil. (1859), 221: Mon. iv, 106.
Elliptera Sch., Wien Ent. Mon. vii, 222 (1863): D. A. ii, 559 ; O. S. Mon. iv, 122.
Rhamphidia Meig., Syst. Beschr. vi, 281 (1830); Sch., D. A. ii, 558; O. S. Mon. iv, 103.
Atarba O. S. Mon. iv, 127 (1868).
Paratropesa Sch., Zool. Bot. Ges. xvi, 932 (1866), Novara, 44; O. S. Mon. iv, 132, 333.
Dicranoptycha O. S.. Pr. Ac. Phil. (1859), 217; Sch., D. A. ii, 560 ; O. S. Mon. iv, 116.
Antocha O. S., Pr. Ac. Phil. (1859), 219; Sch., D. A. ii, 558: O. S. Mon. iv, I25.
Teucholabis O. S., Proc. Ac. Phil. (1859), 293; Mon. iv, 129.
Trochobola O. S., Mon. iv, 97 (1868), Discobola O. S. (1865).
Geranomyia Halid., Ent. Mag. i, 154 (1833); Sch., D. A. ii, 564 ; O. S. Mon. iv, 78.
Rhipidia Meig., Syst. Beschr. i, 153 (1818) ; Sch., D. A. ii, 564 ; O. S. Mon. iv, 81, iii, Ad.
Dicranomyia Steph., Cat. Brit. Ins. (1899) ; O. S. Mon. iv, 53.
Limnobia Meig., Syst. Beschr. i, 116 (1818) ; Sch., D. A. ii, 565 ; O.S. Mon. iv. 84.
Rhypholophus Kolenati, Wien Ent. Monat. iv, 393 (1860) ; Sch., D. A. ii, 536 ; O. S. Mon. iv, 141.

Molophilus Cırtis, Brit. Ent. 444 (1833) ; O. S. Mon. iv, 143.
Mesocyphona O. S., Mon. iv, 152 (1868).

Erioptera Meig., Illig. Mag. ii, 262 (1803) ; Sch., D. A. ii, j $\not 1:$ O. S, Mon. iv, $146,151$.
Hoplolabis O. S., Mon. iv, 152 (1868).
Acyphona O. S., Mon. iv, 151 (1868).
Symplecta Meig., Syst. Beschr. vi, 282 (1830) ; Sclı., D. A. ii, 545 ; O. S., Mon. iv, 170.
Cryptolabis O. S., Pr. Ac. Phil. (1859), 225; Mou. iv, 185.
Empeda O. S., Mon. iv, 183 (1868).
Gonomyia O. S., Pr. Ac. Nat. Sci. Phil. 1859, 229; Sch., D. A. ii, 542 ; O. S., Mon. iv, 176: iii, Ad.
Gnophomyia O. S., Pr. Ac. Nat. Sci. Phil. 1859, 223; Sch., D. A. ii, 535 j ; O. S., Mon. iv, $17 \approx$.
Trimicra O. S., Pr. Ac. Phil. (1861), 290; Mon. iv, 165.
Cladura O. S., Pr. Ac. Phil. (1859), 929, Mon. iv, 157.
Diotrepha O. S. Cat. N. A. Dipt. Notes 219 (1878).
Sigmatomera O. S., Moll. iv, 137 (1868).
Anisomera Meig., Syst. Beschr. i, 210 (1818) ; Sch., D. A. ii, 532; O. S. Mon. iv, 242.

Eriocera Macq., Dipt. Ex. i, 1. 74 (1838) ; O. S., Mon. iv, 244.
Penthoptera Schin., Wien Ent. Monat. vii, 220 (1s63), D. A. ii, 534 ; O. S. Mon. iv, 256.
Dicranota Zett. Ins. Lapp. 851 (1835-40) ; Sch., D. A. ii, 530 ; O. S. Mon. iv, 278.
Rhaphidolabis O. S. Mon. iv, 284 (1868).
Plectromyia O. S. Mon. iv. 282 (1868).
Ula Halid., Ent. Mag. i, 153 (1833) ; Sch., D. A. ii. 531 ; O. S. Mon. iv, 274.
Amalopis Halid., Wlk. Ins. Brit. App. p. xv (1856) ; O. S., Pr. Ac. Phil. 185̃9, 245 : Sch., D. A. ii, 527 ; O. S., Mon. iv, 260.
Pedicia Latr., Gen. Crust. et Ins. iv, $25 \tilde{5}$ (1809) ; Sch., D. A. ii, 526 ; O. S. Mou. iv, 273.
Ulomorpha O. S., Mon. iv, 232 (1868).
Phyllolabis O. S., West. Dipt. 202 (1877).
Trichocera Meig., Illig. Mag. ii, 262 (1803) ; Sch., D. A. ii, 546 ; O. S., Mon. iv. 233.

Epiphragma O. S., Pr. Ac. Nat. Sci. Phil. 1859, 238; Sch., D. A. ii, 250 ; O. S., Mon. iv, 193.
Idioptera Macq., Hist. Nat. i, 94 (1534) ; Sch., D. A. ii, 548 ; O. S., Mon. iv, 199
Lasiomastix O. S., Proc. Ac. Phil. (1859), 233, Mon. jv, 199.
Dicranophragma O. S., Pr. Ac. Phil. (1859), 240; Mon. iv, 199.
Ephelia Sch., Wien Ent. Monat. vii, 2ッ2 (1836) ; D. A. ii, 549 ; O. S. Mon. iv, 199.
Limnophila Macq., Hist. Nat. i, 95 (1831) : Sch., D. A. ii, 554; O. S., Mon. iv, 196.
Prionolabis O. S., Proc. Ac. Phil. (1859), 239; Mon. iv, 197.
Dactylolabis O. S., Proc. Ac. Nat. Sci. Phil. 1859, 240 ; Sch., D. A. ii, 559 ; O. S.. Mon. iv, 198.

DIXID正.

Dixa Meig., Syst. Beschr. i, 216 (1818) ; Sch., Dipt. Austr. ii, 641.

BIBIONID E .

Hesperinus Wlk., List i, 81 (1815) ; Spotius H. Loew. Berl. Ent. Zeit. ii, 107; Scli., D. A. ii, 639.

Plecia Wied．，Aus．Zw．i， 72 （1828）．
Bibio Geoffr．，Hist．Ins．ii， 571 （1764）；Sch．，Dipt．Austr．ii， 357.
Dilophus Meig．，Illig．Mag．ii， 264 （1803）；Sch．，Dipt．Austr．ii， 355.
Aspistes Meig．，Syst．Beschr．i， 319 （1818）：Sch．，Dipt．Austr．ii． 347.
Scatopse Geoffr．，Hist．Ins．ii， 545 （1764）；Sch．，Dipt．Austr．ii， 348.

SIMULID平。

＂um Latr．，Hist．Ins．et Crıst．xiv， 294 （1804）；Sch．，D．A．ii，363．

BLEPHAROCERID业．

$\overrightarrow{\boldsymbol{F}}$ ．onia Sch．，Zool．Bot．Ges．xvi， 931 （1866）；Novara， 27.
Bros ephala O．S．，Hayd．Rep．Geol．Surv．Colo．，1873，564；H．Loew，Zeits．
1．Ent．1877， 95.
Agathon v．Röder．，Wien Ent．Zeit．1890， 230.
Blepharocera Macq．，An．Soc．Ent．Fr．ii，1， 61 （1843）；Sch．，D．Austr．ii， 637. Liponeura H．Loew，Stett．Ent．Zeit．1844， 118.

RHYPHID \boldsymbol{w}^{2}

Olbiogaster O．S．，Biol．C．－A．Dipt．i， 20 （1886）．
Rhyphus Latr．，Hist．Nat．Ins．et Crust．xiv， 291 （1804）；Sch．，D．A．ii， 494.

ORPHNEPHILID雨．

Orphnephila Halid．，Zool．Journ．v（1831）；Sch．，D．A．ji， 643.

N．B．－For valuable descriptions，notes and references on all the genera of Tipulidæ of the world，see Osten Sacken＇s＂Studies on Tipulidæ，＂Pts．I and II，in Berl．Ent．Zeitschr．xxx（1886），pp． 153－188，and xxxi（1887），pp．163－242．

[^0]: * A single European species only has beeu described. The § is unknowu.

[^1]: * Walker does not mention ocelli in description of Diomomus, which is here included.

[^2]: * Althongh this cannot actually be gathered from the description, it is universal so far as I can find in the gronp to which this genns belongs.

